Home > клуб знакомств ярославль > Знакомства в нижнем новгороде

Знакомства в нижнем новгороде

но в действительности трение или какая – либо другая причина, поглощающая энергию колебаний, неизбежны, и амплитуда колебаний не будет увеличиваться так сильно. кроме того, даже эти большие амплитуды резонанса не } станавливаются моментально, а требуют некоторого времени для раскачивания (ср. ч. ii, стр. 113, 79). и действительно практика показывает, что быстрый переход через сконструировать особые приспособления, предупреждающие делается меньше / (рис. 53), т. е. центр тяже – рис, 53. предварительный сти турбины с располагается блисже к линии расчет упругой оси вра – оси о, чем середина согнутой оси d. но если щения. указанных точек образуется момент сил fe и fe, который тотчас же переведет центр тяжести снова наружу. другими словами, положение центра такой парадоксальный результат получился у нас отчасти потому, что мы с самого начала приняли, что векторы ос и od имеют одинаковое направление, но главным образом потому, что мы имеем здесь случаи динамического равновесия (равновесие движения) и вопрос об устойчивости принимает несколько иную форму. для большей ясности мы произведем наш расчет еще раз, откинув предноложение, что точки о, d, с расположены ни одной прямой, и введя в уравнения движения проведем оси декартовых координат ох и окс началом в точке о несогнутой оси (рис. 54) и пусть векторы г и в образуют с осью ох углы аир. когда центр тяжести с будет равномерно вращаться вокруг оси турбины с угловою скоростью и, то угол fi будет равномерно расти, iv. вращение твердого тела вокруг неподвижной оси на турбину действуют следующие силы: во-первых, центробежная сила nir, приложенная к центру тяжести; затем сила трения, которую мьь положим пропорциональной расстоянию г центра тяжести от начала. не желая входить в детали конструкции турбины, мы можем оставить коэфи – рис. 54. явление резонанса центру тяжес™ турбины и получаем: проектируя это уравнение на оси координат, мы можем заменить подобные уравнения нам уже встречались в теории вынужденных колебаний, и кы можем прямо написать их решения в следующей форме x = rcosa=rcos(h/ — <р); y = r sin a = г sin (ut—<р); из этих формул мы можем вывести целый ряд следствий, которые 1) при вращении турбины на оси adb центр тяжести с должен описывать круги рациуса е вокруг точки d оси. однако сама точка д в свою очередь, описывает круги радиуса / вокруг начала о, потому что стрела прогиба остается при равномерной скорости вращения и постоянней. Знакомства в нижнем новгороде, и центр тяжести с тоже описывает kpyin постоянного радиуса вокруг точки о, потому что и величина г при постоянной 2) наши уравнения, как мы уже указали, имеют вид уравнений вынужденных колебаний точки, и угол <р играет в них роль разности фаз между колебаниями действующей силы (правые знакомства в нижнем новгороде уравнений) и колебаниями точек (х и у). но в действительности мы имеем не колебания, а вращения вокруг оси о; а наши уравнения представляют собой один из примеров разложения равномернэ-вращательного движения на два взаимно перпендикулярных гармонических колебания (ср. ч. и. стр. 136, рис. 59, 91). поэтому <р на самом деле представляет величину угла, образуемого векторами виг, как это видно из самого рис. 54 и из 3) итак, величины <р, г, / остаются при равномерном вращении турбины постоянными, но для различных скоростей вращения и они будут, вообще говоря, различными. при скоростях и, меньших критической скорости а (ниже резонанса), угол 55. явление резонанса образующие, как мы теперь видим, всегда не – в упругой оси вращения, турбины, не переводят центр тяжести с за точку d, подальше от центра ответ на этот вопрос мы имеем в наших уравнениях движения, где центробежная сила представлена членами тх и ту, и эта сила уравновешивается не только силой упругости, но также и силой трения fr. все эти силы вместе образуют замкнутый векторный четырехугольник (ср. ч. п, стр. 109, рис. 39 и стр. по, рис. 40; 77) и, следовательно, мы можем исследовать устойчивость рассматриваемого движения другим способом (см. Знакомства в нижнем новгороде. ii, стр. 305, 209). представим себе, что мы отклоняем рассматриваемую систему от того стационарного движения, которое мы получили из наших уравнений, знакомства в нижнем новгороде. е. представим себе, что мы сообщили турбине толчок, изменяющий угол <р координаты хну изменятся тоже на некоторые величины 5л; и 5у, т (х – f – 5а:) – f – c(x-\-bx) – f – b (x – f – 5л:) == be cos (и/); m (v -| – by) + c (у -\ ~ ? y) + b (x – j – bx) = be sin (ut) 88 iv. вращение твердого тела вокруг неподвижной оси вычтя из этих уравнений наши основные уравнения, мы получаем: как видим, величины 8л: и ьу будут совершать затухающие гармонические колебания (ср. ч. ii, стр. 102, 73). но это и означает, что рассмотренное нами движение с постоянным углом ср обладает устойчивостью. 70. уравнения эйлера. переходя к изучению явлений вращении твердого тела вокруг неподвижной точки, мы прежде всего преобразуем разложим вектор к, т. е. изменение вектора к со временем, на две части: на изменение по отношению к материальным точкам самого враща – ющегося тела, —это изменение мы обозначим через к', и на изменение вектора к, которое обусловлено только вращением. это последнее изменение, как это мы уже неоднократно выясняли, равно [ик] (ср. ч. i, стр. 41, 42, ч. и, стр. 201, 132; ч. iii, стр. 93, 64) итак, представим себе во вращающемся теле систему декартовых координат oxyz, неизменно связанную с телом и, следовательно, вращающуюся вместе с ним. начало этих знакомства в нижнем новгороде мы возьмем в неподвижной точке тела (вокруг которой тело вращается и через которую все время проходит ось вращения тела; при этом, однако, направление оси вращения может изменяться со временем), а сами оси направим по главным осям инерции тела относительно этой точки. обозначив проекции угловой скорости вращения и на эти (вращающиеся) координаты через /? , q, г, обычно принятые обозначения, мы можем написать для проекций момента так как величины л, в, с остаются по отношению к выбранным нами осям постоянными, то производные по времени момента импульса 90 v. вращение твердого тела вокруг неподвижной точки таким образом уравнения моментов у нас напишутся в виде: эти уравнения были впервые получены эйлером (1760). обращаем внимание читателя на то обстоятельство, что в этих уравнениях все проекции векторов (включая и вектор момента сил м) отнесены к подвижным осям координат, неизменно связанным с вращающимся телом. 71« решение уравнений эйлера при отсутствии внешних моментов. если угловые скорости вращения тела и их изменения со временем известны, то по уравнениям эйлера мы легко можем определить моменты действующих сил, но обратная задача — по данным моментам определить движение тела — представляет значительные математические трудности и если на тело не действуют никакие внешние моменты, то уравнения и. могут быть решены в конечной форме эллиптическими функциями обозначим через /? 0, qqi г0 значения угловых скоростей в начальный момент времени ^ = 0 и выберем этот момент так, чтобы q0 = 0; тогда угловые скорости в последующие моменты могут быть выражены в которых dn, sn, en суть символы эллиптических функций (они нам встречались при исследовании колебаний в ч. ii, стр. 163, 107, рис. 77), а постоянные о и е, а также и величина модуля к эллиптических функций заметим, что, для того чтобы эти величины были реальны, необходимо если распределение масс в теле обладает некоторой симметрией, причем моменты инерции в и с одинаковы, то и модуль делается равным нулю и эллиптические функции превращаются в круговые. подобные случаи мы разберем ниже, независимо от общей формы решения уравнений.

  1. No comments yet.
  1. No trackbacks yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: