Home > познакомлюсь для орального секса > Знакомства трансы питер

Знакомства трансы питер

бывают Знакомства трансы питер, когда основные частоты а! и а” мнимы (система при 101. пример. для того чтобы вычисления предыдущих параграфов приобрели ббльшую наглядность, мы применим их к уже разобранному нами случаю волчка, находящегося под действием знакомства трансы питер тяжести (стр. 116, 88). момент сил тяжести равен (рис. 73): подставляем сюда значение 0 = &0 -|- v, где v — очень малая величина; в прежних наших вычислениях мы вторым членом пренебрегали. применяя обозначения предыдущих знакомства трансы питер, мы имеем: первая из этих формул показывает, что при отсутствии связи (т. е* при г = 0) частота колебаний оказывается мнимой; другими словами, волчок совсем не будет совершать колебаний, а будет падать. однако при быстром вращении он устойчив и будет совершать нутации с частота эта действительная, и волчок будет вращаться не падая, однако не нужно забывать, что все наши вычисления приближенные и основаны на предположении, что быстрота вращения волчка велика. поэтому определение минимальной быстроты г вращения волчка, при которой он уже перестает быть устойчивым, по этой формуле делать нельзя. для этой цели пришлось бы вернуться к точным формулам § 86; но мы дальнейшие вычисления величин ь9 v, ]i, ф производятся, как на стр. 102. волчок-маятник. теперь предположим, что волчок прикреплен к стержню и подвешен в виде маятника (рис. 74). пока волчок еще не приведен во вращение, такой маятник будет совершать колебания под влиянием силы тяжести, как всякий другой физический маятник. частота колебаний его при малых отклонениях определяется формулою (стр. где а означает момент инерции маятника вокруг оси качания. если же мы приведем волчок во вращение, то получим совсем иные явления. при не особенно быстром вращении волчка маятник еще будет совершать колебания, однако его плоскость колебания не останется неизменной, а будет поворачиваться (как маятник фуко: ч. ii, 213, 141). мы получим маятник с прецессией. если же вращение волчка очень быстрое, то маятник совсем не будет совершать своих обычных колебаний, а останется только одна псевдорегулярная прецессия с небольшими теоретически этот случай отличается от предыдущего только тем, что теперь угол ь0 (рис. 74) тупой, тогда как в обыкновенном стоячем волчке он острый (рис. 73). уравнения движения остаются те же: однако теперь благодаря тому, что угол ъ0 тупой, частота собственных колебаний (при отсутствии связи; cosft0Знакомства трансы питер), результирующая частота нутаций будет выражаться такой же однако, так как теперь cosd0Знакомства трансы питер мы получаем для результирующей частоты и для эти формулы те же, что и при отсутствии вращения (г=0), и не содержат в себе ничего принципиально неверного. между тем, если мы сделаем то же самое с формулой для прецессии, то получим: 103] стоячий волчок при малых отклонениях от вертикали 137 вообще во всех предыдущих вычислениях мы предполагали, что волчок вращается быстро, и это позволило нам знакомства трансы питер приближенные решения с достаточной точностью. теперь мы не будем предполагать, что волчок вращается быстро, зато предположим, что ось волчка только не значительно отклоняется от вертикали. при таких условиях тоже можно получить приближенные формулы решений, причем эти формулы будут применимы как к случаям быстрых, так и к случаям медленных прежде всего выясним вопрос о прецессии и обратимся для этого к уравнению момента импульса знакомства трансы питер вертикальной оси oz (стр. 108, так как момент силы тяжести не имеет составляющей по вертикали, то момент импульса k остается постоянным. предположим, что в начале движения (? =0) волчок стоял вертикально; тогда момент импульса и эта величина остается постоянной и в последующие моменты движения, даже если мы толкнем ось волчка, сообщив ему небольшую ско – рость ft. при таком толчке мы прибавляем некоторый момент импульса вокруг оси ок9 но момент импульса вокруг оси oz остается подставляем эту величину k в уравнение импульса и несколько до сих пор наши формулы вполне точны, но они не позволяют оп – ределить ф независимо от &; а величина & нам пока еще неизвестна. теперь воспользуемся тем, что величина отклонения ft мала, и положим: второй член, стоящий в скобках, настолько мал по сравнению с между тем как выше, при неверном расчете, мы получили величину вдвое большую. как видим, наше первое приближение сводится к тому, 138 vii. вращение твердого тела вокруг неподвижной точки что мы отбрасываем небольшие изменения прецессии со временем и принимаем псевдорегулярную
прецессию за регулярную. чтобы проверить себя, мы можем определить производную прецессии по времени: откуда видим, что изменения прецессии со временем, действительно, но если с самого начала принять, что прецессия равномерна, то из положив в нем ф = 0, мы тоже получаем (cos & ==+^): эту величину ф мы пвдставляем в первое уравнение моментов: мь = mgs-sinb =»л» — лфз sin ь cos о-f – сгф sin а и, таким образом, получаем уравнение для нутаций (sin 0 = в; cos 0=1): это — известное диференциальное уравнение гармонических колебаний, и мы можем написать его решение в такой форме; эта формула верна при любых значениях скорости вращения волчка г, но при условии, что отклонения v0 незначительны. из этой формулы мы видим, что волчок может устойчиво вращаться вокруг вертикальной оси лишь до тех пор, пока его скорость вращения г удовлетворяет если вращение волчка замедлится еще более, то теоретически частота колебаний оси а делается мнимой; а практически это означает, что вертикально вращающийся волчок будет неустойчив и при малейшем 104. волчок-маятник при малых отклонениях. совершенно тот же прием мы можем применить и к тому случаю, когда точка опоры волчка помещена выше его центра тяжести, т. е. когда волчок подвешен, как маятник. в этом случае малые отклонения от вертикали будут означать, уравнение момента импульса вокруг вертикали напишется так: предположив, что в момент t = q маятник висел вертикально, мы и эта величина k при отсутствии моментов сил вокруг вертикали остается и to все последующие моменты движения неизменной. подставляя это опять, как и в предыдущем параграфе, пренебрегаем небольшими величина прецессии та же, как и для стоячего волчка, но она противоположного знака. этот результат мы тоже могли бы получить из вто – теперь введем угол а в первое уравнение моментов, приняв во я после подстановки значения ф даст нам диференциальное уравнение мы получили гармонические колебания волчка-маятника с частотой амплитуда v0 этих колебаний зависит от силы первоначального толчка. одновременно с этими колебаниями {нутациями) маятник будет совершать прецессию, величину которой мы определили выше. в следующем параграфе мы исследуем эти движения подробнее, а сейчас заметим только, что в рассматриваемом нами теперь случае частота а не может получить vii. вращение твердого тела вокруг неподвижной точки мнимое значение (как это мы имели в предыдущем параграфе), и движение подвешенного волчка будет всегда устойчиво, что ясно само собой. 105. кривые, описываемые осью вертикального волчка. интересно рассмотреть подробнее те кривые, которые начинает описывать ось волчка обозначим расстояние рассматриваемой точки р оси волчка от точки опоры через / (ср. рис. 83 и 86, 107); тогда расстояние ее от вертикальной оси будет равно /siaft. если мы опустим из этой точки перпендикуляр на горизонтальную плоскость xy, проведенную через точку опоры, изменение x и у со временем и даст нам представление о движении оси волчка. подставляем сюда значения & и ф и получаем уравнение траектории точки в параметрической форме, причем параметром служит уравнения этих кривых можно написать и в такой форме: нетрудно видеть, что первые члены этих сумм составляют вместе дви – знак -|- мы знакомства трансы питер, чтобы показать, что вращение по кругу направлено в положительную сторону (как растут углы в тригонометрии); згу угловую скорость нужно представить себе отложенной по оси – f~ oz. вторые члены этих сумм составляют вместе тоже движение по кругу того же радиуса, но направленное в противоположную сторону; угловая таким образом полученные нами кривые можно образовать сложением двух взаимнопротивоположных круговых движений одинакового радиуса, но различных частот. этим замечанием можно воспользоваться 106. частный случай. интересно применить полученные формулы к тому случаю, когда момент силы тяжести равен нулю (случай свободного положив mgs = 0f мы получаем для частоты нутаций: ту же величину, что и для прецессии, и уравнения траектории получают нетрудно видеть, что эти формулы представляют собой уравнения круга, окружность которого проходит через начало координат и центр два гармонических колебания по осям ох и oy одинаковой амплитуды и одинакового периода, но с разностью фаз в 90° дают вместе vii. вращение твердого тела вокруг неподвижной точки для стоячего волчка а положительно, и угловая скорость движения по кругу должна быгь отложена по оси -\-oz\ для висячего волчка та же угловая скорость а должна быть отложена по оси — oz. при этом является вопрос, что означает это различие в знаке а, когда в ра
ссматриваемом случае на волчок совсем не действует момент силы тяжести, и разница между стоячим и висячим волчком пропадает.

  1. No comments yet.
  1. No trackbacks yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: